(47-2x)+(x^2+32)=180

Simple and best practice solution for (47-2x)+(x^2+32)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (47-2x)+(x^2+32)=180 equation:



(47-2x)+(x^2+32)=180
We move all terms to the left:
(47-2x)+(x^2+32)-(180)=0
We add all the numbers together, and all the variables
(-2x+47)+(x^2+32)-180=0
We get rid of parentheses
x^2-2x+47+32-180=0
We add all the numbers together, and all the variables
x^2-2x-101=0
a = 1; b = -2; c = -101;
Δ = b2-4ac
Δ = -22-4·1·(-101)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{102}}{2*1}=\frac{2-2\sqrt{102}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{102}}{2*1}=\frac{2+2\sqrt{102}}{2} $

See similar equations:

| -5v=-60 | | 2.8x-8=5.3x+7 | | 62+w=78 | | (47-2x)+x^2+32)=180 | | 3.2t-13.4=-7 | | X+2x=180° | | 12/7=36/x | | m^2=−5m+6 | | 3^4x=-9 | | 1^6x=10 | | 3t+9=10() | | (2a+6)=14 | | 1x-13=6 | | 17+4y=9y+2 | | 12(x-6)(5x+8)=0 | | -2y(y-3)+5=3 | | 3x-12x-9= | | 64x2+48x+9=0 | | (1/4x)=3 | | -10.5x+12=-20 | | 3x−6=9−2x | | A(t)=225-15t | | 2r2+3=67 | | 2q+11=-4 | | 3x-5x+7=0 | | x+2x+12=81 | | 3g+3/4=5g-1 | | 6z+16=-2 | | 2x(x+3)+12=26 | | 2/3+1/6z=5/6z+1/3 | | 3(2-g)+16=2(g-10)+2 | | 3(3k-10)-7=k+35 |

Equations solver categories